Rational Transformations of Systems of Commuting Nonselfadjoint Operators
نویسنده
چکیده
The work of M. S. Livšic and his collaborators in operator theory associates to a system of commuting nonselfadjoint operators an algebraic curve. Guided by the notion of rational transformation of algebraic curves, we define the notion of a rational transformation of a system of commuting nonselfadjoint operators.
منابع مشابه
ar X iv : m at h / 06 01 04 7 v 1 [ m at h . A G ] 3 J an 2 00 6 SEVERAL APPLICATIONS OF BEZOUT MATRICES
The notion of Bezout matrix is an essential tool in studying broad variety of subjects: zeroes of polynomials, stability of differential equations, rational transformations of algebraic curves, systems of commuting nonselfadjoint operators, boundaries of quadrature domains etc. We present a survey of several properties of Bezout matrices and their applications in all mentioned topics. We use th...
متن کاملThe Sums and Products of Commuting AC-Operators
Abstract: In this paper, we exhibit new conditions for the sum of two commuting AC-operators to be again an AC-operator. In particular, this is satisfied on Hilbert space when one of them is a scalar-type spectral operator.
متن کاملA Generalized Rule For Non-Commuting Operators in Extended Phase Space
A generalized quantum distribution function is introduced. The corresponding ordering rule for non-commuting operators is given in terms of a single parameter. The origin of this parameter is in the extended canonical transformations that guarantees the equivalence of different distribution functions obtained by assuming appropriate values for this parameter.
متن کاملCommuting Families in Skew Fields and Quantization of Beauville’s Fibration
We construct commuting families in fraction fields of symmetric powers of algebras. The classical limit of this construction gives Poisson commuting families associated with linear systems. In the case of a K3 surface S, they correspond to lagrangian fibrations introduced by Beauville. When S is the canonical cone of an algebraic curve C, we construct commuting families of differential operator...
متن کاملOn Commuting Differential Operators
The theory of commuting linear differential expressions has received a lot of attention since Lax presented his description of the KdV hierarchy by Lax pairs (P,L). Gesztesy and the present author have established a relationship of this circle of ideas with the property that all solutions of the differential equations Ly = zy, z ∈ C, are meromorphic. In this paper this relationship is explored ...
متن کامل